If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+x^2=29
We move all terms to the left:
7x+x^2-(29)=0
a = 1; b = 7; c = -29;
Δ = b2-4ac
Δ = 72-4·1·(-29)
Δ = 165
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{165}}{2*1}=\frac{-7-\sqrt{165}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{165}}{2*1}=\frac{-7+\sqrt{165}}{2} $
| 4x+8/3=3/16 | | 9d/4=-9 | | x/6+2.33333-3.5*1.2=23/5 | | 9/4d=-9 | | |3.2-1.054x|=2 | | 4/x-5=7x | | 3=d=9/4 | | 4+6(x-1)=1-6(x-8) | | 3m-2=4m+4-m | | 8t^2+26t+15=0 | | (x-30)+(2x-120)+(1/2+15)=180 | | 8t^2+26t+158t=0 | | 8xx=7 | | 6/187x17/2=x | | 2y×(y×3)=2 | | -3/2+19/4+z=2 | | -7w-3/2=6/5w-6/5 | | 95.30=19.95+.55x | | -5x-100=-85 | | 4x^2-7x-120=0 | | -131.76=5.4(0.1-5n) | | X^2=(x/4)+48 | | (X)^2=(x/4)+(48/1) | | 5x5=5x4 | | 3-(3x+3)=5-x | | -6(-2w+2)-4w=2(w-9)-2 | | -19=b/7 | | 8x+1=6X-3 | | 7x-1=3x×7 | | 2(g-3)=2 | | (X)^2=(x/4)+48 | | 2(4-1)²=x |